Comparison of Rooting Strategies to Explore Rock Fractures for Shallow Soil-Adapted Tree Species with Contrasting Aboveground Growth Rates: A Greenhouse Microcosm Experiment
نویسندگان
چکیده
For tree species adapted to shallow soil environments, rooting strategies that efficiently explore rock fractures are important because soil water depletion occurs frequently. However, two questions: (a) to what extent shallow soil-adapted species rely on exploring rock fractures and (b) what outcomes result from drought stress, have rarely been tested. Therefore, based on the expectation that early development of roots into deep soil layers is at the cost of aboveground growth, seedlings of three tree species (Cyclobalanopsis glauca, Delavaya toxocarpa, and Acer cinnamomifolium) with distinct aboveground growth rates were selected from a typical shallow soil region. In a greenhouse experiment that mimics the basic features of shallow soil environments, 1-year-old seedlings were transplanted into simulated microcosms of shallow soil overlaying fractured bedrock. Root biomass allocation and leaf physiological activities, as well as leaf δ13C values were investigated and compared for two treatments: regular irrigation and repeated cycles of drought stress. Our results show that the three species differed in their rooting strategies in the context of encountering rock fractures, however, these strategies were not closely related to the aboveground growth rate. For the slowest-growing seedling, C. glauca, percentages of root mass in the fractures, as well as in the soil layer between soil and bedrock increased significantly under both treatments, indicating a specialized rooting strategy that facilitated the exploration of rock fractures. Early investment in deep root growth was likely critical to the establishment of this drought-vulnerable species. For the intermediate-growing, A. cinnamomifolium, percentages of root mass in the bedrock and interface soil layers were relatively low and exhibited no obvious change under either treatment. This limited need to explore rock fractures was compensated by a conservative water use strategy. For the fast-growing, D. toxocarpa, percentages of root mass in the bedrock and interface layers increased simultaneously under drought conditions, but not under irrigated conditions. This drought-induced rooting plasticity was associated with drought avoidance by this species. Although, root development might have been affected by the simulated microcosm, contrasting results among the three species indicated that efficient use of rock fractures is not a necessary or specialized strategy of shallow-soil adapted species. The establishment and persistence of these species relied on the mutual complementation between their species-specific rooting strategies and drought adaptations.
منابع مشابه
Trade-Offs between Drought Survival and Rooting Strategy of Two South American Mediterranean Tree Species: Implications for Dryland Forests Restoration
Differences in water-acquisition strategies of tree root systems can determine the capacity to survive under severe drought. We evaluate the effects of field water shortage on early survival, growth and root morphological variables of two South American Mediterranean tree species with different rooting strategies during two growing seasons. One year-old Quillaja saponaria (deep-rooted) and Cryp...
متن کاملAssessment of Root Growth and Physiological Responses of Four Bread Wheat (Triticum aestivum L.) Cultivars to Salinity Stress
Enlarged root systems that extend into the salt affected soil improve water and nutrient capture by plants and can increase plant productivity. In order to examine root system characteristics of four bread wheat cultivars contrasting in salt tolerance (Arg, Ofoq, Tajan and Morvarid) a greenhouse experiment was conducted with applying two salinity levels (0 and 150 mM NaCl) on plants grown in PV...
متن کاملInfluence of lowland forests on subsurface salt accumulation in shallow groundwater areas
In flat sedimentary plains in areas with a sub-humid climate, tree planting on grasslands and arable lands creates strong hydrological shifts. As a result of deep rooting and high water uptake of trees, groundwater levels drop and subsurface salt accumulation increases. Tree planting has expanded globally and in Hungary it reached rates of 15 000 ha year(-1), being focused mainly in the Great H...
متن کاملEffects of leaf litter depth on the emergence and seedling growth of deciduous forest tree species in relation to seed size1
KOSTEL-HUGHES, F., T. P. YOUNG, AND J. D. WEHR. (Louis Calder Center—Biological Field Station and Department of Biological Sciences, Fordham University, P.O. Box 887, Armonk, NY 10504). Effects of leaf litter depth on the emergence and seedling growth of deciduous forest tree species in relation to seed size. J. Torrey Bot. Soc. 132: 50–61. 2005.—Leaf litter has a major impact on soil microenvi...
متن کاملEffects of deficit irrigation and groundwater depth on root growth of direct seeding rice in a column experiment
Rice is an essential crop in Iran that is grown mostly in areas where depth to groundwater is low. Root growth and water uptake of rice under shallow groundwater has not been thoroughly studied. This experiment was conducted to determine the lowland rice (cv. Ghasrodashti) root distribution above shallow groundwater in relation to deficit irrigation and groundwater depth in cylindrical gre...
متن کامل